Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design.

نویسندگان

  • Guang-Feng Wei
  • Zhi-Pan Liu
چکیده

The electrocatalytic oxygen reduction reaction (ORR) on nanoparticles has attracted much attention in recent years for its significance in fuel cell applications. Here by combining density functional theory (DFT) calculations with the periodic continuum solvation model based on modified-Poisson-Boltzmann (CM-MPB) electrostatics, we analyzed the ORR activity on a set of differently sized Pt nanoparticles in order to identify the optimum particles for a better designed catalyst. We show that Pt nanoparticles of ∼2 nm size have the highest ORR mass activity, which is attributed to the variation of the effective reaction sites on the exposed {111} facet at the electrochemical conditions. We propose a type of a new nanocatalyst for the electrocatalytic oxygen reduction based on the knowledge from large-scale first principles simulations on Pt nanoparticles. The new catalyst has inert metal Au as the frame for the Pt nanoparticle and exposed Pt{111} sites are the active site for oxygen reduction. Such an architecture can not only prevent the initial O corrosion at the edge sites but also significantly improve the activity. The theoretical work provides a promising new direction for the rational design of a stable and active ORR catalyst via nano-structure engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Oxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs

In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...

متن کامل

Shape-controlled synthesis of porous AuPt nanoparticles and their superior electrocatalytic activity for oxygen reduction reaction

Control of structure and morphology of Pt-based nanomaterials is of great importance for electrochemical energy conversions. In this work, we report an efficient one-step synthesis of bimetallic porous AuPt nanoparticles (PAuPt NPs) in an aqueous solution. The proposed synthesis is performed by a simple stirring treatment of an aqueous reactive mixture including K2PtCl4, HAuCl4, Pluronic F127 a...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 42  شماره 

صفحات  -

تاریخ انتشار 2013